4.5 Article

Functional Roles of Mouse Sperm Hyaluronidases, HYAL5 and SPAM1, in Fertilization

Journal

BIOLOGY OF REPRODUCTION
Volume 81, Issue 5, Pages 939-947

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1095/biolreprod.109.078816

Keywords

cumulus cells; fertilization; hyaluronidase; mouse; oocyte; ovum; sperm

Funding

  1. Japan Society for the Promotion of Science (JSPS)
  2. Mizutani Foundation for Glycoscience
  3. Grants-in-Aid for Scientific Research [21112005, 21248038] Funding Source: KAKEN

Ask authors/readers for more resources

Although sperm entry into the oocyte-cumulus complex and subsequent sperm penetration through the cumulus matrix to reach the oocyte zona pellucida are essential for mammalian fertilization, the molecular mechanism remains controversial. Previously, we have shown that mouse sperm lacking SPAM1 are capable of penetrating the cumulus matrix despite a delayed dispersal of cumulus cells. We also have identified another sperm hyaluronidase, HYAL5, as a candidate enzyme involved in sperm penetration through the cumulus. In the present study, we produced HYAL5-deficient mice to uncover the functional roles of HYAL5 and SPAM1 in fertilization. The HYAL5-deficient mice were fully fertile and yielded normal litter sizes. In vitro fertilization assays demonstrated that HYAL5-deficient epididymal sperm is functionally normal. We thus conclude that HYAL5 may be dispensable for fertilization. Comparative analysis among wild-type, HYAL5-deficient, and SPAM1-deficient epididymal sperm revealed that only SPAM1 is probably involved in sperm penetration through the cumulus matrix. Notably, the loss of SPAM1 resulted in a remarkably increased accumulation of sperm on the surface or outer edge of the cumulus. These data suggest that SPAM1 may function in sperm entry into the cumulus and sperm penetration through the cumulus matrix.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available