4.6 Article

Pore size analysis of activated carbons from argon and nitrogen porosimetry using density functional theory

Journal

LANGMUIR
Volume 16, Issue 11, Pages 5041-5050

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la990827a

Keywords

-

Ask authors/readers for more resources

We present isotherms calculated from density functional theory for the adsorption of argon in model slit-shaped carbon pores at 77 K. The model isotherms are used to interpret experimental argon uptake measurements and to obtain the pore size distributions of several porous carbons. A similar set of density functional theory isotherms, previously reported for nitrogen adsorption on carbon slit pores at 77 K, are used to determine pore size distributions for the same set of carbons. The pore size distribution maxims, mean pore widths, and specific pore volumes measured using the two different probe gases are all found to agree to within approximately 8% on average. Some of the differences in the pore size distributions obtained from argon and nitrogen porosimetry may be attributable to quadrupolar interactions of the nitrogen molecules with functional groups on the carbon surface.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available