4.6 Article Proceedings Paper

Sample transport efficiency with electrothermal vaporization and electrostatic deposition technique in multielement solid sample analysis of plant and cereal materials

Journal

SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY
Volume 55, Issue 5, Pages 449-460

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0584-8547(00)00186-5

Keywords

solid sampling; electrothermal vaporization; electrostatic deposition; transport efficiencies; simultaneous multielement determination; coherent forward scattering

Categories

Ask authors/readers for more resources

A graphite furnace of the boat-in-tube type as electrothermal vaporizer (ETV) and an electrostatic precipitator were used for determining analyte transport efficiencies and dependencies on plant and cereal matrices, and on carrier elements. All analytical measurements were carried out with coherent forward scattering (CFS) using simultaneous multielement determinations. Transport efficiencies of up to 19% for Cu, 21% for Fe and Mn, and 36% for Pb from the ETV boat to the L'vov platform were obtained for the standard reference materials BCR CRM 281 rye grass, BCR CRM 189 wholemeal flour and NIST SRM 1567 wheat flour and multielement standard solutions containing approximately the same element ratios as certified for the solid samples. The analytical accuracy of the procedure including the ETV process and the electrostatic deposition was tested with Cu, Fe and Pb in BCR CRM 281, Cu, Fe and Mn in BCR CRM 189, and Fe and Mn in NIST SRM 1567 by weighing the solid sample onto the ETV-boat and calibrating against multielement standard solutions dosed into the ETV-boat as well. The analyte addition technique was tested with Cu, Fe and Mn in wholemeal flour. The deviations of the results were below 10% and the relative standard deviations (R.S.D.) values were typically 3-10%. The influence of added potassium and palladium nitrates as physical carriers on the transport efficiencies of Ag, Al, Cd, Cu, Fe, Ni, Pb and Zn standard solutions was investigated with simultaneous multielement determination. Using K and Pd as carriers increased transport efficiencies by factors up to 1.74 in comparison to measurements without an added carrier. (C) 2000 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available