4.2 Article Proceedings Paper

Chondrocyte translocation response to direct current electric fields

Journal

Publisher

ASME-AMER SOC MECHANICAL ENG
DOI: 10.1115/1.429661

Keywords

-

Ask authors/readers for more resources

Using a custom galvanotaxis chamber and time-lapse digital video microscopy, we report the novel observation that cultured chondrocytes exhibit cathodal migration when subjected to applied direct current (DC) electric fields as low as 0.8 V/cm. The response was dose-dependent for field strengths greater than 4 V/cm. Cell migration appeared to be an active process with extension of cytoplasmic processes in the direction of movement. In some cells, field application for greater than an hour induced elongation of initially round cells accompanied by perpendicular alignment of the long axis with respect to the applied field. Antagonists of the inositol phospholipid pathway, U-73122 and neomycin, were able to inhibit cathodal migration. Cell migration toward the cathode did nor require the presence of serum during field application. However, the directed velocity was nearly threefold greater in studies performed with serum. Studies performed at physiologic temperatures (similar to 37 degreesC) revealed a twofold enhancement in migration speed compared to similar studies at room temperature (similar to 25 degreesC). Findings from the present study may help to elucidate basic mechanisms that mediate chondrocyte migration and substrate attachment. Since chondrocyte migration has been implicated in cartilage healing, the ability to direct chondrocyte movement has the potential to impact strategies for addressing cartilage healing/repair and for development of cartilage substitutes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available