4.6 Article

Functional exoenzymes as indicators of metabolically active bacteria in 124,000-year-old sapropel layers of the eastern Mediterranean Sea

Journal

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
Volume 66, Issue 6, Pages 2589-2598

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.66.6.2589-2598.2000

Keywords

-

Ask authors/readers for more resources

Hydrolytic exoenzymes as indicators of metabolically active bacteria were investigated in four consecutive sapropel layers collected from bathyal sediments of the eastern Mediterranean Sea. For comparison, the organic carbon-poor layers between the sapropels, sediment from the anoxic Urania basin, and sediments of intertidal mud flats of the German Wadden Sea were also analyzed. The sapropel layers contained up to 1.5 . 10(8) bacterial cells cm(-3), whereas cell numbers in the intermediate layers were lower by a factor of 10, In sapropels, the determination of exoenzyme activity with fluorescently labeled substrate analogues was impaired by the strong adsorption of up to 97% of the enzymatically liberated fluorophores (4-methylumbelliferone [MUF] and 7-amino-4-methylcoumarin [MCA]) to the sediment particles. Because all established methods for the extraction of adsorbed fluorophores proved to be inadequate for sapropel sediments, we introduce a correction method which is based on the measurement of equilibrium adsorption isotherms for both compounds. Using this new approach, high activities of aminopeptidase and alkaline phosphatase were detected even in a 124,000-year-old sapropel layer, whereas the activity of beta-glucosidase was low in all layers. So far, it had been assumed that the organic matter which constitutes the sapropels is highly refractory. The high potential activities of bacterial exoenzymes indicate that bacteria in Mediterranean sapropels are metabolically active and utilize part of the subfossil kerogen. Since a high adsorption capacity was determined not only for the low-molecular-weight compounds MUF and MCA but also for DNA, the extraordinarily strong adsorption of structurally different substrates to the sapropel matrix appears to be the major reason for the long-term preservation of biodegradable carbon in this environment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available