4.5 Article

The effect of ammonium chloride on metabolism of primary neurons and neuroblastoma cells in vitro

Journal

METABOLIC BRAIN DISEASE
Volume 15, Issue 2, Pages 151-162

Publisher

KLUWER ACADEMIC/PLENUM PUBL
DOI: 10.1007/BF02679981

Keywords

ammonium chloride; hepatic encephalopathy; ATP; glutamate; neuroblastoma cells

Ask authors/readers for more resources

Hyperammonemia is a consistent finding in many metabolic disorders. The excess ammonia (NH4Cl) interferes with brain energy metabolism possibly in part by inhibiting the tricarboxylic acid (TCA) cycle. Inhibition of the TCA cycle may result in depletion of ATP in the brain cells. In this study, the acute and chronic effect of NH4Cl (7.5 mM and 15 mM) on the metabolism of isolated neurons and neuroblastoma cells was examined. These cells were treated with NH4Cl for 15 minutes and 24 hours. Morphologic and metabolic toxicity were greater in neuroblastoma cells than in primary neurons. Following 15 minutes treatment, concentration of lactate increased significantly in neuroblastoma cells but, the concentration of other metabolites did not change significantly in neuroblastoma cells and in primary neurons. Following 24 hours treatment, the glucose utilization increased in both cell types. This high utilization of glucose in neuroblastoma cells was in concert with an increase in lactate and decrease in glutamate and ATP. In primary neurons, following 24 hours treatment, the glucose utilization significantly increased, but the concentration of the other metabolites did not change significantly. Neuroblastoma cells consumed more glucose than primary neurons in absence of NH4Cl, but generated the same amount of lactate as neurons.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available