4.8 Article

A stress-inducible gene for 9-cis-epoxycarotenoid dioxygenase involved in abscisic acid biosynthesis under water stress in drought-tolerant cowpea

Journal

PLANT PHYSIOLOGY
Volume 123, Issue 2, Pages 553-562

Publisher

AMER SOC PLANT BIOLOGISTS
DOI: 10.1104/pp.123.2.553

Keywords

-

Categories

Ask authors/readers for more resources

Four cDNA clones named CPRD (cowpea responsive to dehydration) corresponding to genes that are responsive to dehydration were isolated using differential screening of a cDNA library prepared from 10-h dehydrated drought-tolerant cowpea (Vigna unguiculata) plants. One of the cDNA clones has a homology to 9-cis-epoxpcarotenoid dioxygenase (named VuNCED1), which is supposed to be involved in abscisic acid (ABA) biosynthesis.:The GST (glutathione S-transferase)-fused protein indicates a 9-cis-epoxycarotenoid dioxygenase activity, which catalyzes the cleavage of 9-cis-epoxycarotenoid. The N-terminal region of the VuNCED1 protein directed the fused sGFP (synthetic green-fluorescent protein) into the plastids of the protoplasts, indicating that the N-terminal sequence acts as a transit peptide. Both the accumulation of ABA and expression of VuNCED1 were strongly induced by drought stress in the 8-d-old cowpea plant, whereas drought stress did not trigger the expression of VuABA1 (accession no. AB030295) gene that encodes zeaxanthin epoxidase. These results indicate that the VuNCED1 cDNA encodes a 9-cis-epoxycarotenoid dioxygenase and that its product has a key role in the synthesis of ABA under drought stress.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available