4.7 Article

Nrf2 and c-Jun regulation of antioxidant response element (ARE)-mediated expression and induction of γ-glutamylcysteine synthetase heavy subunit gene

Journal

BIOCHEMICAL PHARMACOLOGY
Volume 59, Issue 11, Pages 1433-1439

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0006-2952(00)00256-2

Keywords

gamma-glutamylcysteine synthetase; antioxidant response element; Nrf1; Nrf2; c-Jun; regulation of expression

Funding

  1. NIGMS NIH HHS [GM47466] Funding Source: Medline

Ask authors/readers for more resources

gamma-Glutamylcysteine synthetase (gamma-GCS) is a rate-limiting enzyme in the de novo synthesis of glutathione, a known scavenger of electrophiles and reactive oxygen species (ROS). The gamma-GCS gene is expressed ubiquitously and induced coordinately with NAD(P)H:quinone oxidoreductase(1) (NQO1) and glutathione S-transferase Ya (GST Ya) in response to xenobiotics and antioxidants. The antioxidant response element (ARE) is required for expression and induction of these genes. In the current report, we demonstrated that ARE-mediated gamma-GCS gene expression and induction is regulated by similar Nrf and Jun factors as reported earlier for the NQO1 and GST Ya genes. The gamma-GCS gene ARE competed with the binding of nuclear proteins (Nrf + Jun) to the NQO1 gene ARE (hARE). In addition, the overexpression of Nrf2 and Nrf1 with c-Jun significantly up-regulated gamma-GCS ARE-mediated basal expression and beta-naphthoflavone induction of the chloramphenicol acetyltransferase gene in transfected HepG2 cells. Interestingly, Nrf2 + c-Jun was more effective than Nrf1 + c-Jun in the regulation of ARE-mediated gamma-GCS gene expression. Further experiments demonstrated that the c-Jun level within the cells is an important determinant of the lever of ARE-mediated gamma-GCS gene expression. Therefore, at higher concentrations of c-Jun, gamma-GCS gene expression is repressed, presumably due to generation of a sufficient amount of c-Jun + c-Fos complex that interferes with the binding of Nrf2 + c-Jun complex to the ARE. BIOCHEM PHARMACOL 59;11:1433-1439, 2000. (C) 2000 Elsevier Science Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available