4.7 Article

Mitochondrial DNA (mtDNA) reveals that female Bechstein's bats live in closed societies

Journal

MOLECULAR ECOLOGY
Volume 9, Issue 6, Pages 793-800

Publisher

WILEY-BLACKWELL
DOI: 10.1046/j.1365-294x.2000.00934.x

Keywords

Chiroptera; mtDNA; microsatellites; Myotis bechsteinii; population structure; social behaviour; transponder

Ask authors/readers for more resources

We present a microgeographic analysis of mitochondrial DNA (mtDNA) in Bechstein's bats using three sources of control region sequence variability, including a novel mtDNA microsatellite, to assess individual relatedness both within and among 10 maternity colonies. Comparison of marker variability among 268 adult females revealed little genetic variability within each colony. However, most colonies were clearly distinguished by colony-specific mitochondrial haplotypes (total n = 28). Low intracolony variability and strong haplotype segregation among colonies, was reflected by an extraordinary high F-ST of 0.68, indicating a very low intercolony dispersal rate of approximately one female in five generations. Haplotype distribution among 18 solitary males showed that males frequently disperse between colony locations, indicating the absence of dispersal barriers. Bechstein's bat maternity colonies are thus closed groups that comprise 20-40 females probably belonging to only one or, at most, two matrilines. The genetic population structure of Bechstein's bats is in agreement with the hypothesis that females seek familiar and, at least, partially related cooperation partners for raising their young. Alternatively strong philopatry might reflect the importance of profound roost or habitat knowledge for successful reproduction in female Bechstein's bats.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available