4.6 Article

Evidence of hydroxyl-ion deficiency in bone apatites: An inelastic neutron-scattering study

Journal

BONE
Volume 26, Issue 6, Pages 599-602

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/S8756-3282(00)00273-8

Keywords

hydroxyapatite; bone apatite; hydroxyl ions; acid phosphates

Ask authors/readers for more resources

The novelty of very large neutron-scattering intensity from the nuclear-spin incoherence in hydrogen has permitted the determination of atomic motion of hydrogen in synthetic hydroxyapatite and in deproteinated isolated apatite crystals of bovine and rat hone without the interference of vibrational modes from other structural units. From an inelastic neutron-scattering experiment, we found no sharp excitations characteristic of the vibrational mode and stretch vibrations of OH ions around 80 and 450 meV (645 and 3630 cm(-1)), respectively, in the isolated, deproteinated crystals of bone apatites; such salient features were clearly seen in micron- and nanometer-size crystals of pure hydroxyapatite powders. Thus, the data provide additional definitive evidence for the lark of OH- ions in the crystals of hone apatite. Weak features at 160-180 and 376 meV, which are clearly observed in the apatite crystals of rat bone and possibly in adult mature bovine bone, but to a much lesser degree, but not in the synthetic hydroxyapatite, are assigned to the deformation and stretch modes of OH ions belonging to HPO4-like species. (Bone 26:599-602; 2000) (C) 2000 by Elsevier Science Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available