4.4 Article

Identification, cloning, and initial characterization of rot, a locus encoding a regulator of virulence factor expression in Staphylococcus aureus

Journal

JOURNAL OF BACTERIOLOGY
Volume 182, Issue 11, Pages 3197-3203

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.182.11.3197-3203.2000

Keywords

-

Categories

Funding

  1. NIAID NIH HHS [R01 AI042072, R01 AI42072-02] Funding Source: Medline

Ask authors/readers for more resources

A chromosomal insertion of transposon Tn917 partially restores the expression of protease and alpha-toxin activities to PM466, a genetically defined agr-null derivative of the wild-type Staphylococcus aureus strain RN6390. In co-transduction experiments, transposon-encoded erythromycin resistance and a protease- and alpha-toxin-positive phenotype are transferred at high frequency from mutant strains to agr-null strains of S. aureus. Southern analysis of chromosomal DNA and sequence analysis of DNA flanking the Tn917 insertion site in mutant strains revealed that the transposon interrupted a 498-bp open reading frame (ORF). Similarity searches using a conceptual translation of the ORF identified a region of homology to the known staphylococcal global regulators AgrA and SarA. To verify that the mutant allele conferred the observed phenotype, a wild-type allele of the mutant gene was introduced into the genome of a mutant strain by homologous recombination. The resulting isolates had a restored agr-null phenotype. Virulence factor gene expression in mutant, restored mutant, and wild-type strains was quantified by measuring alpha-toxin activity in culture supernatant fluids and by Northern analysis of the alpha-toxin transcript. We named this ORF rot (for repressor of toxins) (GenBank accession no. AF189239) because of the activity associated with rot::Tn917 mutant strains.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available