4.8 Article

Elevated atmospheric CO2 alters microbial population structure in a pasture ecosystem

Journal

GLOBAL CHANGE BIOLOGY
Volume 6, Issue 5, Pages 475-482

Publisher

WILEY
DOI: 10.1046/j.1365-2486.2000.00326.x

Keywords

elevated CO2; Rhizobium leguminosarum bv. trifolii; microbial community; microbial population

Ask authors/readers for more resources

An increase in concentration of atmospheric CO2 is one major factor influencing global climate change. Among the consequences of such an increase is the stimulation of plant growth and productivity. Below-ground microbial processes are also likely to be affected indirectly by rising atmospheric CO2 levels, through increased root growth and rhizodeposition rates. Because changes in microbial community composition might have an impact on symbiotic interactions with plants, the response of root nodule symbionts to elevated atmospheric CO2 was investigated. In this study we determined the genetic structure of 120 Rhizobium leguminosarum by, trifolii isolates from white clover plants exposed to ambient (350 mu mol mol(-1)) or elevated (600 mu mol-mol(-1)) atmospheric CO2 concentrations in the Swiss FACE (Free-Air-Carbon-Dioxide-Enrichment) facility. Polymerase Chain Reaction (PCR) fingerprinting of genomic DNA showed that the isolates from plants grown under elevated CO2 were genetically different from those isolates obtained from plants grown under ambient conditions. Moreover, there was a 17% increase in nodule occupancy under conditions of elevated atmospheric CO2 when strains of R. leguminosarum by. trifolii isolated from plots exposed to CO2 enrichment were evaluated for their ability to compete for nodulation with those strains isolated from ambient conditions. These results indicate that a shift in the community composition of R. leguminosarum by. trifolii occurred as a result of an increased atmospheric CO2 concentration, and that elevated atmospheric CO2 affects the competitive ability of root nodule symbionts, most likely leading to a selection of these particular strains to nodulate white clover.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available