4.4 Article

Dynamic light scattering measurement of nanometer particles in liquids

Journal

JOURNAL OF NANOPARTICLE RESEARCH
Volume 2, Issue 2, Pages 123-131

Publisher

SPRINGER
DOI: 10.1023/A:1010067107182

Keywords

nanoparticle; characterization; light scattering; PCS; interferometry; diffusion; polydispersivity

Ask authors/readers for more resources

Dynamic light scattering (DLS) techniques for studying sizes and shapes of nanoparticles in liquids are reviewed. In photon correlation spectroscopy (PCS), the time fluctuations in the intensity of light scattered by the particle dispersion are monitored. For dilute dispersions of spherical nanoparticles, the decay rate of the time autocorrelation function of these intensity fluctuations is used to directly measure the particle translational diffusion coefficient, which is in turn related to the particle hydrodynamic radius. For a spherical particle, the hydrodynamic radius is essentially the same as the geometric particle radius (including any possible solvation layers). PCS is one of the most commonly used methods for measuring radii of submicron size particles in liquid dispersions. Depolarized Fabry-Perot interferometry (FPI) is a less common dynamic light scattering technique that is applicable to optically anisotropic nanoparticles. In FPI the frequency broadening of laser light scattered by the particles is analyzed. This broadening is proportional to the particle rotational diffusion coefficient, which is in turn related to the particle dimensions. The translational diffusion coefficient measured by PCS and the rotational diffusion coefficient measured by depolarized FPI may be combined to obtain the dimensions of non-spherical particles. DLS studies of liquid dispersions of nanometer-sized oligonucleotides in a water-based buffer are used as examples.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available