4.7 Article

Isotopic variability of N2O emissions from tropical forest soils

Journal

GLOBAL BIOGEOCHEMICAL CYCLES
Volume 14, Issue 2, Pages 525-535

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/1999GB001181

Keywords

-

Ask authors/readers for more resources

We report measurements of the N-15 and O-18 signature of N2O emitted from tropical rain forest soils at the La Selva Biological station in Costa Rica and in the Fazenda Vitoria in the State of Para, Brazil. The delta(15)N values ranged from -34 to 2 parts per thousand with respect to atmospheric N-2, while delta(18)O values had a smaller range, from -4 to 18 parts per thousand with respect to atmospheric O-2. We attribute these large variations to differences in microbial production, consumption, and transport of N2O. In general the delta(15)N of N2O emissions from an Oxisol soil in Brazil were consistently enriched by similar to 20 parts per thousand in N-15 compared to those from Ultisol and Inceptisol soils in Costa Rica. Denitrification is the most likely source of N2O in both locations during the rainy season, and the N-15 of nitrate was similar in both locations. We attribute the overall variability in emitted N-15 to differences in the ratio of N2O:N-2 escaping from the soil to the atmosphere, with a larger fraction of the N2O reduced to N-2 at the Brazilian sites. We found light delta(15)N-N2O values associated with high N2O emissions in a fertilized agricultural site in Costa Rica and in a hot spot of high emissions in the forest site in Brazil. This result suggests that the increase of substrate availability might increase the fractionation associated with N2O production. Overall, the Brazilian Oxisol soils had the most enriched delta(15)N-N2O emissions yet measured from soils. if these are more representative of tropical soil emissions than the Costa Rica emissions, then the globally averaged delta(15)N-N2O tropical rain forest soil source is more enriched than previously estimated. The large variations in isotopic signature for N2O emissions demonstrate the potential utility of stable isotopes as tools for understanding the processes of N2O production and consumption in soils.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available