4.5 Article

Molecular responses of rat tracheal epithelial cells to transmembrane pressure

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajplung.2000.278.6.L1264

Keywords

asthma; gene expression; mechanical stress; early growth response-1; endothelin-1; transforming growth factor-beta 1

Ask authors/readers for more resources

Smooth muscle constriction in asthma causes the airway to buckle into a rosette pattern, folding the epithelium into deep crevasses. The epithelial cells in these folds are pushed up against each other and thereby experience compressive stresses. To study the epithelial cell response to compressive stress, we subjected primary cultures of rat tracheal epithelial cells to constant elevated pressures on their apical surface (i.e., a transmembrane pressure) and examined changes in the expression of genes that are important for extracellular matrix production and maintenance of smooth muscle activation. Northern blot analysis of RNA extracted from cells subjected to transmembrane pressure showed induction of early growth response-1 (Egr-1), endothelin-1, and transforming growth factor-beta 1 in a pressure-dependent and time-dependent manner. Increases in Egr-1 protein were detected by immunohistochemistry. Our results demonstrate that airway epithelial cells respond rapidly to compressive stresses. Potential transduction mechanisms of transmembrane pressure were also investigated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available