4.5 Article

Separating style and content with bilinear models

Journal

NEURAL COMPUTATION
Volume 12, Issue 6, Pages 1247-1283

Publisher

MIT PRESS
DOI: 10.1162/089976600300015349

Keywords

-

Ask authors/readers for more resources

Perceptual systems routinely separate content from style, classifying familiar words spoken in an unfamiliar accent, identifying a font or handwriting style across letters, or recognizing a familiar face or object seen under unfamiliar viewing conditions. Yet a general and tractable computational model of this ability to untangle the underlying factors of perceptual observations remains elusive (Hofstadter, 1985). Existing factor models (Mardia, Kent, & Bibby, 1979; Hinton & Zemel, 1994; Ghahramani, 1995; Bell & Sejnowski, 1995; Hinton, Dayan, Prey, & Neal, 1995; Dayan, Hinton, Neal, & Zemel, 1995; Hinton & Ghahramani, 1997) are either insufficiently rich to capture the complex interactions of perceptually meaningful factors such as phoneme and speaker accent or letter and font, or do not allow efficient learning algorithms, We present a general framework for learning to solve two-factor tasks using bilinear models, which provide sufficiently expressive representations of factor interactions but can nonetheless be fit to data using efficient algorithms based on the singular value decomposition and expectation-maximization. We report promising results on three different tasks in three different perceptual domains: spoken vowel classification with a benchmark multispeaker database, extrapolation of fonts to unseen letters, and translation of faces to novel illuminants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available