4.2 Article

Interleukin (IL)-4 and IL-13 inhibit the differentiation of murine osteoblastic MC3T3-E1 cells

Journal

ENDOCRINE JOURNAL
Volume 47, Issue 3, Pages 293-302

Publisher

JAPAN ENDOCRINE SOCIETY
DOI: 10.1507/endocrj.47.293

Keywords

interleukin-13; interleukin-4; osteoblast differentiation; parathyroid hormone

Ask authors/readers for more resources

Interleukin-4 (IL-4) inhibits the spontaneous and stimulated bone resorption resulting from the inhibition of osteoclast formation, as well as osteoclastic activity. Since IL-13 shares some biological properties with IL-4, it was recently reported that IL-13 inhibits bone resorption. The present study was designed to determine the effects of murine IL-4 (IL-4) and murine IL-13 (IL-13) on the murine osteoblastic cell line MC3T3-E1. IL-4 and IL-13 stimulated H-3-thymidine incorporation in the MC3T3-E1 cells and its proliferation in dose dependent manners. A spontaneous increase in alkaline phosphatase (ALP) activity in the cells after plating was inhibited by IL-4 or IL-13, and both cytokines blunted an increase in ALP activity by human parathyroid hormone (PTH) (1-34). PTH-stimulated cyclic AMP (cAMP) production was inhibited by pretreatment with IL-4 and IL-13 for 48 hr in dose dependent manners. Pretreatment with IL-4 and IL-13 for 48 hr caused a decrease in PTH-induced cAMP production at any stimulatory concentration. However, the effective dose (ED50) was unchanged by the pretreatment with these cytokines. Pretreatment with IL-4 and IL-13 did not modulate cAMP generation by forskolin. In contrast, cAMP generation by PGE(2) is greater in the cells treated with the cytokines compared to those without the cytokines. These results indicate that IL-4 and IL-13 act on MC3T3-E1 cells in the same manner, stimulating cell proliferation, but inhibiting cell differentiation. The inhibition of osteoblast differentiation by IL-4 and IL-13 may be associated with a decrease in PTH actions on osteoblasts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available