4.7 Article

Soil-dependent variability of leaf iron accumulation in transgenic tobacco overexpressing ferritin

Journal

PLANT PHYSIOLOGY AND BIOCHEMISTRY
Volume 38, Issue 6, Pages 499-506

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/S0981-9428(00)00763-4

Keywords

anaemia; ferritin; iron; metal acquisition phosphorus

Categories

Ask authors/readers for more resources

Ferritin overexpression in transgenic plants has been recently reported to increase leaf and seed iron content. We investigated the influence of various soil conditions on this increase in leaf iron content. One control transgenic tobacco and two transgenic tobaccos overexpressing ferritin in the plastids or in the cytoplasm, respectively, were grown on five different soils, two of them being amended with sewage sludge. Although a significant increase in leaf iron concentration was measured in transgenics overexpressing ferritin grown on three out of five soils, this increase was not a general rule. On some soils, leaf iron concentration of control plants was as high as in transgenics grown on other soils. In addition, an increased phosphorus concentration in the two sewage sludge amended soils correlated with a high leaf iron concentration in control plants, similar to the one measured in ferritin transformed plants. Indeed, growing plants in vitro with various increasing phosphate concentrations revealed a direct P involvement in iron loading of control plants, at a similar level as overexpressing ferritin plants. Also, with one of the soil tested, not only iron but also manganese, zinc and cadmium, and to a much lesser extent copper, nickel and lead were found more abundantly in ferritin transformed plants than in control plants. These data indicate that the iron fortification of leaves, based on ferritin overexpression, could be limited in its biotechnological application because of its high soil dependence. (C) 2000 Editions scientifiques et medicales Elsevier SAS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available