4.7 Article

Predicting transpiration of shaded and non-shaded tomato fruits under greenhouse environments

Journal

SCIENTIA HORTICULTURAE
Volume 84, Issue 3-4, Pages 297-307

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0304-4238(99)00130-2

Keywords

model; tomato; transpiration; conductance; greenhouse; humidity

Categories

Ask authors/readers for more resources

Fruit water balance is determined by entry of sap through xylem and phloem, and losses due to back-flow from fruits to other organs, and to transpiration. The latter, which may vary according to growing and climatic conditions, plays a significant role in fruit water balance. To better understand and predict tomato fruit transpiration, measurements of the transpiration rate of shaded and non-shaded fruits were carried out under a wide range of climatic conditions in two greenhouse compartments with different levels of air vapour pressure deficit (VPDair). Linear models relating transpiration and either air VPD (VPDair) or fruit-to-air VPD (VPDfr-air) were proposed and their parameters were identified. The best fit was always obtained when using the explicative variable VPDfr-air The model using VPDair as variable fits moderately well in the case of shaded fruits, but is not adequate for non-shaded fruits. Values of cuticular conductance, g(c) deduced from our measurements appeared to depend (i) on the growth-VPD regime and (ii) on the prevailing values of VPDfr-air. Our results suggest that, as for leaf transpiration, VPD between the evaporating surface and the air is the variable that drives the fruit transpiration rate, and that more realistic models could be based on the hypothesis of a variation of g(c) vs. VPD. (C) 2000 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available