4.8 Article

Distinct patterns of dystrophin organization in myocyte sarcolemma and transverse tubules of normal and diseased human myocardium

Journal

CIRCULATION
Volume 101, Issue 22, Pages 2586-2594

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/01.CIR.101.22.2586

Keywords

proteins; myocardium; myocyte; heart failure

Ask authors/readers for more resources

Background-Genetic mutations of dystrophin and associated glycoproteins underlie cell degeneration in several inherited cardiomyopathies, although the precise physiological role of these proteins remains under discussion. We studied the distribution of dystrophin in relation to the force-transducing vinculin-rich costameres in left ventricular cardiomyocytes from normal and failing human hearts to further elucidate the function of this protein complex. Methods and Results-Single- and double-label immunoconfocal microscopy and parallel high-resolution immunogold fracture-label electron microscopy were used to localize dystrophin and vinculin in human left ventricular myocytes from normal (n=6) and failing hearts (idiopathic dilated cardiomyopathy, n=7, or ischemic heart disease, n=5). in control cardiomyocytes, dystrophin had a continuous distribution at the peripheral sarcolemma, with concentrated bands corresponding to the vinculin-rich costameres. Intracellular labeling extended along transverse (T) tubule membranes. Fracture-label confirmed this distribution, showing significantly greater label on plasma membrane fractures overlying 1-bands (I-band 4.1 +/- 0.3 gold particles/mu m; A-band 3.3 +/- 0.2 gold particles/mu m: mean +/- SE, P=0.02). Hypertrophied myocytes from failing hearts showed maintenance of this surface distribution except in degenerating cells; there was a clear increase in intracellular dystrophin label reflecting T-tubule hypertrophy. Conclusions-Dystrophin partially colocalizes with costameric vinculin in normal and hypertrophied myocytes, a distribution lost in degenerating cells. This suggests a primarily mechanical role for dystrophin in maintenance of cell membrane integrity in normal and hypertrophied myocytes. The presence of dystrophin in the cardiac T-tubule membrane, in contrast to its known absence in skeletal muscle T-tubules, implies additional roles for dystrophin in membrane domain organization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available