4.5 Article

Endosymbiotic bacteria as a source of carotenoids in whiteflies

Journal

BIOLOGY LETTERS
Volume 8, Issue 6, Pages 986-989

Publisher

ROYAL SOC
DOI: 10.1098/rsbl.2012.0664

Keywords

Bemisia tabaci; carotenoids; endosymbionts; genome reduction; Candidatus Portiera aleyrodidarum

Funding

  1. Yale University
  2. National Institutes of Health [1F32GM099334]

Ask authors/readers for more resources

Although carotenoids serve important biological functions, animals are generally unable to synthesize these pigments and instead obtain them from food. However, many animals, such as sap-feeding insects, may have limited access to carotenoids in their diet, and it was recently shown that aphids have acquired the ability to produce carotenoids by lateral transfer of fungal genes. Whiteflies also contain carotenoids but show no evidence of the fungus-derived genes found in aphids. Because many sap-feeding insects harbour intracellular bacteria, it has long been hypothesized that these endosymbionts could serve as an alternative source of carotenoid biosynthesis. We sequenced the genome of the obligate bacterial endosymbiont Portiera from the whitefly Bemisia tabaci. The genome exhibits typical signatures of obligate endosymbionts in sap-feeding insects, including extensive size reduction (358.2 kb) and enrichment for genes involved in essential amino acid biosynthesis. Unlike other sequenced insect endosymbionts, however, Portiera has bacterial homologues of the fungal carotenoid biosynthesis genes in aphids. Therefore, related lineages of sap-feeding insects appear to have convergently acquired the same functional trait by distinct evolutionary mechanisms-bacterial endosymbiosis versus fungal lateral gene transfer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available