3.8 Article

Up-regulation of tyrosine hydroxylase mRNA in a sub-population of A10 dopamine neurons in Parkinson's disease

Journal

MOLECULAR BRAIN RESEARCH
Volume 79, Issue 1-2, Pages 45-54

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0169-328X(00)00089-9

Keywords

ventral tegmental area; tyrosine hydroxylase mRNA; Parkinson's disease; in situ hybridization; non-melanised neurons

Categories

Ask authors/readers for more resources

Neuronal injury has been consistently found in A10 midbrain dopamine neurons in Parkinson's disease (PD). To assess changes in neurotransmitter-related gene transcription, in these neurons in PD, tyrosine hydroxylase (TH) mRNA expression was examined in the ventral tegmental area (VTA) of seven PD cases and seven control subjects, using in situ hybridization histochemistry (ISHH). In controls, TH mRNA expression was found in both melanised and non-melanised neurons in the VTA. Neither population expressed dopamine beta-hydroxylase (DBH). Of the melanised neurons, 99% were TH mRNA positive. The level of the TH mRNA signal (expressed as grain density per cell) was similar in the two populations (melanised: 0.129+/-0.003 (mean+/-S.E.M.). n=142 vs, non-melanised: 0.138+/-0.006, n=89, P>0.05, Student's t-Test). In PD cases there was no significant change in TH mRNA expression in melanised neurons (0.138+/-0.003, n=196), and the proportion of positively labeled melanised neurons was 98%. However, non-melanised neurons showed significantly higher TH mRNA (0.163+/-0.006, n =87) than non-melanised neurons in control subjects (P<0.005) and melanised neurons in the PD cases (P<0.0005). This up-regulation of TH mRNA expression in non-melanised neurons may suggest the existence of a compensatory mechanism at presynaptic level. (C) 2000 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available