4.6 Article

Ca2+/calmodulin reverses phosphatidylinositol 3,4,5-trisphosphate-dependent inhibition of regulators of G protein-signaling GTPase-activating protein activity

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 275, Issue 25, Pages 18962-18968

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M001128200

Keywords

-

Funding

  1. NIDDK NIH HHS [DK47890] Funding Source: Medline
  2. NIGMS NIH HHS [GM31278] Funding Source: Medline

Ask authors/readers for more resources

Regulators of G protein signaling (RGS proteins) are GTPase-activating proteins (GAPs) for G(i) and/or G(q) class G protein alpha subunits. RGS GAP activity is inhibited by phosphatidylinositol 3,4,5-trisphosphate (PIP3) but not by other lipid phosphoinositides or diacylglycerol. Both the negatively charged head group and long chain fatty acids (C16) are required for binding and inhibition of GAP activity. Amino acid substitutions in helix 5 within the RGS domain of RGS4 reduce binding affinity and inhibition by PIP3 but do not affect inhibition of GAP activity By palmitoylation. Conversely, the GAP activity of a palmitoylation-resistant mutant RGS4 is inhibited by PIP3. Calmodulin binds all RGS proteins we tested in a Ca2+-dependent manner but does not directly affect GAP activity. Indeed, Ca2+/calmodulin binds a complex of RGS4 and a transition state analog of G alpha(i1)-GDP-AlF4-. Ca2+/calmodulin reverses PIP3-mediated but not palmitoylation-mediated inhibition of GAP activity. Ca2+/calmodulin competition with PIP3 may provide an intracellular mechanism for feedback regulation of Ca2+ signaling evoked by G protein-coupled agonists.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available