4.7 Article

Mapping of simple sequence repeat (SSR) DNA markers in diploid and tetraploid alfalfa

Journal

THEORETICAL AND APPLIED GENETICS
Volume 101, Issue 1-2, Pages 165-172

Publisher

SPRINGER
DOI: 10.1007/s001220051465

Keywords

Medicago sativa; autotetraploid linkage map; microsatellites SSR; inbreeding depression; single dose allele (SDA) analysis

Ask authors/readers for more resources

Cultivated alfalfa (Medicago sativa) is an autotetraploid. However, all three existing alfalfa genetic maps resulted from crosses of diploid alfalfa. The current study was undertaken to evaluate the use of Simple Sequence Repeat (SSR) DNA markers for mapping in diploid and tetraploid alfalfa. Ten SSR markers were incorporated into an existing F-2 diploid alfalfa RFLP map and also mapped in an F-2 tetraploid population. The tetraploid population had two to four alleles in each of the loci examined. The segregation of these alleles in the tetraploid mapping population generally was clear and easy to interpret. Because of the complexity of tetrasomic linkage analysis and a lack of computer software to accommodate it, linkage relationships at the tetraploid level were determined using a single-dose allele (SDA) analysis, where the presence or absence of each allele was scored independently of the other alleles at the same locus. The SDA diploid map was also constructed to compare mapping using SDA to the standard co-dominant method. Linkage groups were generally conserved among the tetraploid and the two diploid linkage maps, except for segments where severe segregation distortion was present. Segregation distortion, which was present in both tetraploid and diploid populations, probably resulted from inbreeding depression. The ease of analysis together with the abundance of SSR loci in the alfalfa genome indicated that SSR markers should be a useful tool for mapping tetraploid alfalfa.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available