4.5 Article

Assembly of a functional beta interferon enhanceosome is dependent on ATF-2-c-jun heterodimer orientation

Journal

MOLECULAR AND CELLULAR BIOLOGY
Volume 20, Issue 13, Pages 4814-4825

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.20.13.4814-4825.2000

Keywords

-

Funding

  1. NIAID NIH HHS [AI20642, R01 AI020642] Funding Source: Medline

Ask authors/readers for more resources

Heterodimeric transcription factors, including the basic region-leucine zipper (bZIP) protein ATF-2-c-jun, are well-characterized components of an enhanceosome that mediates virus induction of the human beta interferon (IFN-beta) gene. Here we report that within the IFN-beta enhanceosome the ATF-2-c-jun heterodimer binds in a specific orientation, which is required for assembly of a complex between ATF-2-c-jun and interferon regulatory factor 3 (IRF-3). We demonstrate that correct orientation of the ATF-2-c-jun binding site is required for virus induction of the IFN-beta gene and for IRF-3-dependent activation of a composite ATF-2-c-jun-IRF site in the IFN-beta promoter. We also show that in vitro the DNA-bound ATP-2-c-jun heterodimer adopts a fixed orientation upon the binding of IRF-3 at an adjacent site in the IFN-beta enhancer and that the DNA-binding domain of IRF-3 is sufficient to mediate this effect. In addition, we show that the DNA-binding domain of ATF-2 is necessary and sufficient for selective protein-protein interactions with IRF-3. Strikingly, in vivo chromatin immunoprecipitation experiments with IFN-beta reporter constructs reveal that recruitment of IRF-3 to the IFN-beta promoter upon virus infection is dependent on the orientation of the ATP-2-c-jun heterodimer binding site. These observations demonstrate functional and physical cooperativity between the bZIP and IRF transcription factor families and illustrate the critical role of heterodimeric transcription factors in formation of the IFN-beta enhanceosome.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available