4.7 Article

Influence of long-term fertilisation and crop rotation on changes in fungal and bacterial residues in a tropical rice-field soil

Journal

BIOLOGY AND FERTILITY OF SOILS
Volume 49, Issue 7, Pages 847-856

Publisher

SPRINGER
DOI: 10.1007/s00374-013-0779-5

Keywords

Crop rotation; Groundnut oil cake; Microbial community; Saprotrophic fungi; Soil organic matter

Categories

Funding

  1. Council of Scientific and Industrial Research, New Delhi

Ask authors/readers for more resources

Amino sugars, as a microbial residue biomarker, are highly involved in microbial-mediated soil organic matter formation. However, accumulation of microbial biomass and responses of bacterial and fungal residues to the management practices are different and poorly characterized in rice soils. The objectives of this study were to evaluate the effects of mineral fertiliser (MIN), farmyard manure (FYM) and groundnut oil cake (GOC) on crop yield and co-accumulation of microbial residues and microbial biomass under rice-monoculture (RRR) and rice-legume-rice (RLR) systems. In the organic fertiliser treatments and RLR, rice grain yield and stocks of soil and microbial nutrients were significantly higher than those of the MIN treatment and RRR, respectively. The increased presence of saprotrophic fungi in the organic fertiliser treatments and RRR was indicated by significantly increased ergosterol/C-mic ratio and extractable sulphur. In both crop rotation systems, the long-term application of FYM and GOC led to increased bacterial residues as indicated by greater accumulation of muramic acid. In contrast, the higher fungal C/bacterial C ratio and lower ergosterol/C-mic ratio in the MIN treatment, is likely caused by a shift within the fungal community structure towards ergosterol-free arbuscular mycorrhizal fungi (AMF). The organic fertiliser treatments contributed 22 % more microbial residual C to soil organic C compared to the MIN treatment. Our results suggest that the negative relationship between the ratios ergosterol/C-mic and fungal C/bacterial C encourages studying responses of both saprotrophic fungi and AMF when assessing management effects on the soil microbial community.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available