4.7 Article

Effects of soil drying and rate of re-wetting on concentrations and forms of phosphorus in leachate

Journal

BIOLOGY AND FERTILITY OF SOILS
Volume 45, Issue 6, Pages 635-643

Publisher

SPRINGER
DOI: 10.1007/s00374-009-0375-x

Keywords

Drying-re-wetting; Phosphorus; Leachate; Soil microbial biomass

Categories

Funding

  1. UK Biotechnology and Biological Sciences Research Council (BBSRC) [BB/C504919/1]
  2. Biotechnology and Biological Sciences Research Council [BB/C504919/1, BB/C504919/2] Funding Source: researchfish

Ask authors/readers for more resources

The drying and re-wetting of soils can result in the modification of the amounts and forms of nutrients which can transfer, via leachate, from the soil to surface waters. We tested, under laboratory conditions, the hypothesis that the rate of re-wetting of a dried soil affects the solubilisation and concentrations of different forms of phosphorus (P) in leachate. A portion of grassland pelostagnogley soil (sieved moist < 2 mm) was dried at 35A degrees C and another portion maintained at approximately 40% water-holding capacity. Water (25 ml) was added at ten regularly spaced time intervals in 2.5-ml aliquots to the surfaces of both soils over periods of 0, 2, 4, 24 and 48 h, resulting in different rates of application. The leachate was collected and analysed for dissolved (< 0.45 mu m) and particulate total P and molybdate reactive and unreactive P. The rate of re-wetting significantly changed the concentrations of P, especially dissolved forms, in the leachate. Dissolved P concentrations were highest in leachate from the 2-h treatment, while particulate P concentrations were highest in the 0-h treatment leachate. In all cases, most P was unreactive and, therefore, likely to be in an organic form. Soil drying decreased microbial biomass, but this could not be directly linked to an increase of P in leachate. These results suggest that changes in patterns of rainfall frequency and intensity predicted by climate change scenarios could significantly affect the quantities of P leached from soils.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available