4.4 Article

An efficient split-step time-domain dynamic modeling of DFB/DBR laser diodes

Journal

IEEE JOURNAL OF QUANTUM ELECTRONICS
Volume 36, Issue 7, Pages 787-794

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/3.848349

Keywords

distributed Bragg reflector laser diodes; distributed-feedback laser diodes; time-domain large signal model

Ask authors/readers for more resources

A novel and efficient approach for the numerical solution of time-dependent coupled-wave equations, which are frequently used for the modeling of distributed-feedback, distributed Bragg reflector, and Fabry-Perot laser diodes, is proposed, In this approach, the coupled-wave equations are split into two sets of equations. One of two sets of equations contains only the phase factors and time derivatives, and the other contains only the coupling terms. The separate sets of equations are solved exactly in their split form successively, This new numerical scheme, which we call the split-step time-domain model, is found to require an order of magnitude smaller number of subsections to get more accurate results than previous methods while the computation time for each time step is comparable to previous methods.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available