3.8 Article

Disruption of plastid-encoded RNA polymerase genes in tobacco: expression of only a distinct set of genes is not based on selective transcription of the plastid chromosome

Journal

MOLECULAR AND GENERAL GENETICS
Volume 263, Issue 6, Pages 1022-1030

Publisher

SPRINGER-VERLAG
DOI: 10.1007/PL00008690

Keywords

plastid gene expression; plastid transformation; RNA polymerases; rpo gene disruption; Run-on transcription

Ask authors/readers for more resources

Plastids of higher plants operate with at least two distinct DNA-dependent RNA polymerases, which are encoded in the organelle (PEP) and in the nucleus (NEP), respectively. Plastid run-on assays and Northern analyses were employed to analyse gene expression in tobacco mutant plastids lacking the PEP genes rpoA, rpoB or rpoC1. Hybridisation of run-on transcripts to restriction fragments representing the entire tobacco plastid chromosome, as well as to selected plastid gene-specific probes, shows that all parts of the plastid DNA are transcribed in rpo-deficient plastids. In comparison to wild-type chloroplasts, which are characterized by preferential transcription of photosynthesis-related genes in the light, mutant plastids exhibit a different transcription pattern with less pronounced differences in the hybridisation intensities between the individual genes. The analysis of steady-state transcript patterns and transcription rates of selected genes in both types of plastids demonstrates that differences in transcription rates are not necessarily paralleled by corresponding changes in transcript levels. The accumulation of large transcripts in the mutant plastids indicates that processing of primary transcripts may be impaired in the absence of PEP. These data suggest that, contrary to the prevailing view, much of the regulation of NEP-driven plastid gene expression in the rpo-deficient mutants is not based on differential promoter usage but is exerted at post-transcriptional levels.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available