4.4 Article

Vasoactive intestinal polypeptide and pituitary adenylate cyclase-activating polypeptides stimulate mitogen-activated protein kinase in the pituitary cell line GH4C1 by a 3′,5′-cyclic adenosine monophosphate pathway

Journal

NEUROENDOCRINOLOGY
Volume 72, Issue 1, Pages 46-56

Publisher

KARGER
DOI: 10.1159/000054570

Keywords

GH4 cells; vasoactive intestinal polypeptide; pituitary adenylate cyclase-activating polypeptide; mitogen-activated protein kinases; extracellularly responsive kinases; cyclic AMP; prolactin; protein kinases; thyrotropin-releasing hormone

Ask authors/readers for more resources

Vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP38) regulate anterior pituitary cell secretion and proliferation. In the somatolactotrope GH4C1 cell line, these effects are mediated through the type-II-like PACAP receptor (VPAC2) coupled to the cAMP pathway. In this study, the control of the extracellularly responsive kinases (ERKs) by VIP and PACAP38 was investigated in GH4C1 cells. VIP and PACAP38 increased ERK1 and ERK2 phosphorylation and were equipotent stimulators of both kinases. ERK activation was mimicked by cholera toxin, forskolin and 8bromo-cAMP. VIP and PACAP38 activation of ERK2 was blocked by the protein kinase A inhibitor H89, whereas the protein kinase C inhibitor GF109203X, or prior PMA-induced depletion of the protein kinases C, failed to inhibit VIP and PACAP38 activation of ERK2. In contrast, thyrotropin-releasing hormone (TRH) elicited ERK activation by a PKC-dependent process, ERK activation by VIP or PACAP38 and TRH were additive and both sensitive to the MEK inhibitors PD98059 and U0126, In parallel, U0126 reduced prolactin (PRL) mRNA levels induced by VIP. These results demonstrate for the first time that VIP and PACAP38 activate ERK in GH4C1 cells. Cyclic AMP increase is sufficient to elicit ERK activation in these cells and thus likely to represent the transduction pathway underlying VIP- and PACAP38-dependent ERK activation, This mechanism seems to be involved in VIP-induced PRL gene regulation. Copyright (C) 2000 S. Karger AG, Basel.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available