4.4 Article

Optimal topology design of bracing systems for multistory steel frames

Journal

JOURNAL OF STRUCTURAL ENGINEERING
Volume 126, Issue 7, Pages 823-829

Publisher

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)0733-9445(2000)126:7(823)

Keywords

-

Ask authors/readers for more resources

This paper presents a performance-based optimization method for optimal topology design of bracing systems for multistory steel building frameworks with overall stiffness constraint under multiple lateral loading conditions. Material removal criteria are derived by undertaking a sensitivity analysis on the mean compliance of a structure with respect to element removal. A performance index is proposed to evaluate the performance of resulting bracing systems in the optimization process. Tn the proposed method, unbraced frameworks are initially designed under strength constraints using commercial standard steel sections from databases. The optimal topology of a bracing system for the multistory steel building framework is then generated by gradually removing inefficient materials from a continuum design domain that is used to stiffen the framework until the performance of the bracing system is maximized. Two design examples are provided to illustrate the effectiveness of the performance-based design optimization method proposed for the conceptual layout design of lateral bracing systems for multistory steel building frameworks.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available