4.7 Article Proceedings Paper

Multidrug resistance in the embryos and larvae of the mussel Mytilus edulis

Journal

MARINE ENVIRONMENTAL RESEARCH
Volume 50, Issue 1-5, Pages 319-323

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/S0141-1136(00)00057-X

Keywords

multidrug resistance; Mytilus edulis; embryos; larvae

Ask authors/readers for more resources

Cells exhibiting the multidrug resistance (MDR) phenotype demonstrate a decreased intracellular drug accumulation due to an active outward transport and decreased intracellular flux. This study demonstrates the inhibition of MDR in mussel (Mytilus edulis) embryos and larvae based on a simple bioassay. The development of embryos was assessed and abnormalities identified at key stages of development, including gastrulation, trochophore and prodissoconch stages. The incidence of developmental abnormalities was significantly increased in the presence of vinblastine, MMS, chloroquine, mitomycin-C, cadmium chloride and colchicine, compared to clean seawater. Consistently, there was a further increase in the number and severity of deformities observed when each toxin was added in the presence of verapamil. Larval growth was also significantly impaired in the presence of verapamil. Increased accumulation of fluorescent MDR dyes, such as rhodamine B, has been measured and shown to be verapamil sensitive. This bioassay encompasses a period of intense cellular activity during which the impairment of a number of critical processes results in abnormal growth and development. (C) 2000 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available