4.8 Article

The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana

Journal

PLANT JOURNAL
Volume 23, Issue 2, Pages 171-182

Publisher

BLACKWELL SCIENCE LTD
DOI: 10.1046/j.1365-313x.2000.00768.x

Keywords

sulphate transport; sulphate uptake; green fluorescent protein; sulphur assimilation; root tissue; Arabidopsis thaliana

Categories

Ask authors/readers for more resources

To investigate the uptake and long-distance translocation of sulphate in plants, we have characterized three cell-type-specific sulphate transporters, Sultr1;1, Sultr2;1 and Sultr2;2 in Arabidopsis thaliana. Heterologous expression in the yeast sulphate transporter mutant indicated that Sultr1;1 encodes a high-affinity sulphate transporter (K-m for sulphate 3.6 +/- 0.6 mu m), whereas Sultr2;1 and Sultr2;2 encode low-affinity sulphate transporters (K-m for sulphate 0.41 +/- 0.07 mm and greater than or equal to 1.2 mm, respectively). In Arabidopsis plants expressing the fusion gene construct of the Sultr1;1 promoter and green fluorescent protein (GFP), GFP was localized in the lateral root cap, root hairs, epidermis and cortex of roots. beta-glucuronidase (GUS) expressed with the Sultr2;1 promoter was specifically accumulated in the xylem parenchyma cells of roots and leaves, and in the root pericycles and leaf phloem. Expression of the Sultr2;2 promoter-GFP fusion gene showed specific localization of GFP in the root phloem and leaf vascular bundle sheath cells. Plants continuously grown with low sulphate concentrations accumulated high levels of Sultr1;1 and Sultr2;1 mRNA in roots and Sultr2;2 mRNA in leaves. The abundance of Sultr1;1 and Sultr2;1 mRNA was increased remarkably in roots by short-term stress caused by withdrawal of sulphate. Addition of selenate in the sulphate-sufficient medium increased the sulphate uptake capacity, tissue sulphate content and the abundance of Sultr1;1 and Sultr2;1 mRNA in roots. Concomitant decrease of the tissue thiol content after selenate treatment was consistent with the suggested role of glutathione (GSH) as a repressive effector for the expression of sulphate transporter genes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available