4.6 Article

Free radical scavengers, catalase and superoxide dismutase provide protection from oxalate-associated injury to LLC-PK1 and MDCK cells

Journal

JOURNAL OF UROLOGY
Volume 164, Issue 1, Pages 224-+

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/S0022-5347(05)67499-X

Keywords

urolithiasis; calcium oxalate; free radicals; crystal retention; antioxidants

Funding

  1. NIDDK NIH HHS [R01 DK41434, R01-DK56249] Funding Source: Medline

Ask authors/readers for more resources

Purpose: Current studies have provided evidence that exposure of renal epithelial cells to oxalate and calcium oxalate crystals induces lipid peroxidation and injures the cells. Since oxidant/antioxidant balance is likely to play a critical role, we determined the effect of antioxidant scavengers on production of free radicals and injury to LLC-PK1 and MDCK cells from exposure to oxalate (Ox) or Ox + calcium oxalate monohydrate (COM) crystals. Materials and Methods: LLC-PK1 and MDCK cells were grown in monolayers and exposed to 1.0 mmol. Ox or 1.0 mmol. Ox + 500 mu g./ml. COM crystals for 120 or 240 minutes. We measured the release of lactate dehydrogenase (LDH) as a marker for cell injury and malondialdehyde (MDA) as a marker of lipid peroxidation. Superoxide and hydroxyl radicals were measured in the presence or absence of 400 U/ml. catalase, or superoxide dismutase (SOD). Results: Exposure of LLC-PK1 cells to Ox resulted in a significant increase in MDA and release of LDH, which was further elevated when COM crystals were added. MDCK cells responded similarly to both challenges, but showed significantly less impact when compared with LLC-PK1 cells. Both treatments were associated with significant increase in the generation of hydroxyl and superoxide radicals by both cell types. In both cell lines, the addition of catalase or SOD significantly reduced the increase of MDA and release of LDH. Conclusions: Results of the present study indicate that both Ox and COM crystals are injurious to renal epithelial cells and the injury is associated with generation of free radicals. Cells of proximal tubular origin are more susceptible than those of distal tubules and collecting ducts. Free radical scavengers, catalase and SOD provide significant protection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available