4.2 Article

Ebp2p, yeast homologue of a human protein that interacts with Epstein-Barr virus Nuclear Antigen 1, is required for pre-rRNA processing and ribosomal subunit assembly

Journal

GENES TO CELLS
Volume 5, Issue 7, Pages 543-553

Publisher

WILEY-BLACKWELL
DOI: 10.1046/j.1365-2443.2000.00346.x

Keywords

-

Ask authors/readers for more resources

Background: A defect in the secretory pathway causes the transcriptional repression of both rRNA and ribosomal protein genes in Saccharomyces cerevisiae, suggesting a coupling of ribosome synthesis and plasma membrane synthesis. Rrs1p, an essential nuclear protein, is required for the secretory response. Results: EBP2, encoding the yeast homologue of a human protein that interacts with Epstein-Barr virus Nuclear Antigen 1, was cloned in a two-hybrid screen using RRS1 as a bait. The rrs1-1 mutation, which produces Rrs1p without the C-terminal half and causes a defect in the secretory response, almost abolished the interaction with Ebp2p. Ebp2p is essential for growth and is mainly localized in the nucleolus. The effects of Ebp2p depletion on ribosome biogenesis is quite similar to that of Rrs1p depletion; in the Ebp2p-depleted cells, the rate of pre-rRNA processing is slower, and significantly less mature 25S rRNA is produced compared to those in wild-type cells. The polysome pattern indicates that Ebp2p-depletion causes a decrease of 80S monosomes and polysomes, an accumulation of 40S subunits, and the appearance of half-mer polysomes. Conclusions: Ebp2p is required for the maturation of 25S rRNA and 60S subunit assembly. Ebp2p may be one of the target proteins of Rrs1p for executing the signal to regulate ribosome biogenesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available