4.5 Article

A three-state model for energy trapping and chlorophyll fluorescence in photosystem II incorporating radical pair recombination

Journal

BIOPHYSICAL JOURNAL
Volume 79, Issue 1, Pages 26-38

Publisher

CELL PRESS
DOI: 10.1016/S0006-3495(00)76271-0

Keywords

-

Categories

Ask authors/readers for more resources

The multiphasic fluorescence induction kinetics upon a high intensity light pulse have been measured and analyzed at a time resolution of 10 mu s in intact leaves of Peperomia metallica and Chenopodium album and in chloroplasts isolated from the latter. Current theories and models on the relation between chlorophyll fluorescence yield and primary photochemistry in photosystem II (PSII) are inadequate to describe changes in the initial phase of fluorescence induction and in the dark fluorescence level F-0 caused by pre-energization of the system with single turnover excitation(s). A novel model is presented, which gives a quantitative relation between the efficiencies of primary photochemistry, energy trapping, and radical pair recombination in PSII. The model takes into account that at least two turnovers are required for stationary closure of a reaction center. An open reaction center is transferred with high efficiency into its semiclosed (-open) state. This state is characterized by Q(A) and P680 in the fully reduced state and a lifetime equal to the inverse of the rate constant of Q(A)(-) oxidation (approx. 250 mu s). The fluorescence yield of the system with 100% of the centers in the semiclosed state is 50% of the maximal yield with all centers in the closed state at fluorescence level F-m. situation with similar to 100% of the centers in the semiclosed state is reached after a single turnover excitation in the presence of 3-(3',4'-dichlorophenyl)-1,1-dimethylurea (DCMU). The lifetime of this state under these conditions is similar to 10 s. Closure of a semiclosed (-open) center occurs with low efficiency in a second turnover. The low(er) efficiency is caused by the rate of P+ reduction by the secondary donor Y-Z being competitive with the rate of radical pair recombination in second and following turnovers. The single-turnover-induced alterations in the initial kinetics of the fluorescence concomitantly with a 15-25% increase in F-o can be simulated with the present so called three-state model of energy trapping. The experimental data suggest evidence for an electrostatic effect of local charges in the vicinity of the reaction center affecting the rate of radical pair recombination in the reaction center.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available