4.6 Article

The effect of organic matter on sedimentary phosphorus release in an Australian reservoir

Journal

HYDROBIOLOGIA
Volume 431, Issue 1, Pages 13-25

Publisher

KLUWER ACADEMIC PUBL
DOI: 10.1023/A:1004046103679

Keywords

sediment; P-release; C-source; macrophytes; aerobic; anaerobic; biotic; abiotic

Ask authors/readers for more resources

Australian reservoirs, compared to much of the world, are subjected to extreme arid and semi-arid climatic conditions where dam volumes can range from near-empty to full, often with rapid filling events. P-release, after re-flooding of desiccated sediments, can be important to water quality, and can be further influenced by dried macrophyte, exposed as water recedes and incorporated into sediments. P-release from Lake Rowlands (New South Wales, Australia) sediments was studied under different aerobic and sterile conditions with five carbon source amendments to the sediment (the macrophyte Isoetes sp. in different stages of senescence and acetate). Sedimentary P-release involved a complex array of factors modified by aerobic, biotic and abiotic processes, organic matter breakdown, iron content of sediments and turbulence. Under aerobic conditions, P-release from sterile non-amended sediments and sterile macrophyte-amended sediments was greater than from non-sterile sediments. Under anaerobic conditions, P-release was maximal from non-sterile macrophyte-amended sediments, probably via pathways involving fermentative Fe3+-reducing bacteria where electrons are transferred from organic matter to amorphous Fe(OOH) leading to Fe2+ and consequent release of P. Macrophyte addition (whether fresh or dried) enhanced P-release under anaerobic compared with aerobic conditions. P-release from acetate-amended sediments appeared to involve acetate aerobes. The re-flooding of sediments, therefore, has the potential to create conditions that are conducive to aerobic sedimentary P-release and should be taken into account in management strategies adopted for reservoirs where levels are likely to fluctuate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available