4.7 Article

Sensitivity of two disjunct bacterioplankton communities to exudates from the cyanobacterium Microcystis aeruginosa Kutzing

Journal

MICROBIAL ECOLOGY
Volume 40, Issue 1, Pages 64-73

Publisher

SPRINGER
DOI: 10.1007/s002480000035

Keywords

-

Ask authors/readers for more resources

Microcystis aeruginosa Kutzing releases a variety of bioactive compounds during growth. This study determined whether bacteria from communities co-occurring (M+) or not (M-) with this cosmopolitan cyanobacterium respond similarly to its products. Fifty M+ bacteria from a M. aeruginosa bloom site (Western Basin of Lake Erie) and 50 M- bacteria from a Microcystis-free site (East Twin Lake, Portage Co., OH) were isolated and grown on Standard Methods Agar. Three levels of testing were performed: chemotaxis, antibiotic response, and 48-h cell abundance. Chemotaxis was compared using capillary tubes placed in contact with bacterial, Standard Methods Broth (SMB) suspensions. The capillary choices were conditioned SMB, M. aeruginosa exudate, and BG-11. M+ bacteria showed significantly greater (Tukey's test, p < 0.005) positive chemotaxis to M. aeruginosa exudate compared to control conditions and to M-strains. The latter showed a negative chemotactic response to M. aeruginosa exudate compared to control conditions. Antibiotic response was tested by sensitivity disk assays, first using M. aeruginosa exudates, whole cells, and homogenized cells, and then placing the disks on bacterial fawns of each strain. M+ bacteria were significantly more resistant to inhibition than M- bacteria (chi-square test, p < 0.01). M. aeruginosa exudate, BG-11 algal medium, SMB, and distilled water effects on 48-h abundance of the strains were compared. The M- community bacteria exhibited significantly lower growth yields (Tukey's comparison of means test, p < 0.005) in M. aeruginosa exudate than did the M+ strains. It is evident that those bacteria co-occurring with M. aeruginosa are more likely to be attracted to it, able to withstand exposure to it, and able to utilize its products without inhibition than are bacteria from communities without previous exposure to this cyanobacterium.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available