4.8 Article

Quantum computation through entangling single photons in multipath interferometers

Journal

PHYSICAL REVIEW LETTERS
Volume 85, Issue 1, Pages 198-201

Publisher

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevLett.85.198

Keywords

-

Ask authors/readers for more resources

Single-photon interferometry has been used to simulate quantum computations. Its use has been limited to studying few-bit applications due to rapid growth in physical size with numbers of bits. We propose a hybrid approach that employs n photons, each having L degrees of freedom yielding L-n basis states. The photons are entangled via a quantum nondemolition measurement. This approach introduces the essential element of quantum computing, that is, entanglement into the interferometry. Using these techniques, we demonstrate a controlled-NOT gate and a Grover's search circuit. These ideas are also applicable to the study of nonlocal correlations in many dimensions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available