4.7 Article

Acetyl phosphate-dependent activation of a mutant PhoP response regulator that functions independently of its cognate sensor kinase

Journal

JOURNAL OF MOLECULAR BIOLOGY
Volume 300, Issue 2, Pages 291-305

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1006/jmbi.2000.3848

Keywords

acetyl phosphate; magnesium; PhoP; signal transduction; two-component system

Funding

  1. NIGMS NIH HHS [GM54900] Funding Source: Medline

Ask authors/readers for more resources

The two-component system is a signal communication network generally consisting of a sensor kinase that receives inputs from the environment and modifies the phosphorylated state of a response regulator that executes an adaptive behavior. PhoP is a response regulator that controls virulence gene expression in Salmonella enterica. Transcription of PhoP-regulated genes is modulated by the Mg2+ levels detected by the sensor PhoQ. Here, we describe a PhoP mutant protein, PhoP*, that functions in the absence of its cognate sensor, thereby allowing transcription of PhoP-activated genes independently of the Mg2+ concentration in the environment. The PhoP* protein harbors a S93N substitution in the response regulator receiver domain. PhoP*-mediated transcription is abolished by either mutation of the aspartate residue that is conserved among response regulators as the site of phosphorylation or inactivation of the ypta-encoded phosphotransacetylase. This enzyme mediates the production of acetyl phosphate, which has been shown to serve as a low molecular mass phosphate donor for certain response regulators. The purified PhoP* protein autophosphorylated from acetyl phosphate more efficiently than the wild-type PhoP protein in vitro. The PhoP* protein retained the capacity to interact with the PhoQ protein, which promoted phosphorylation of the PhoP* protein in vitro and abolished PhoP*mediated transcription under high Mg2+ concentrations in vivo. Cumulatively, our results uncover a role of PhoQ in transcriptional repression during growth in millimolar Mg2+ and define a mutant response regulator form with an increased capacity to be phosphorylated by acetyl phosphate. (C) 2000 Academic Press.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available