3.8 Review

Fractionation of cells and subcellular particles with Percoll

Journal

JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS
Volume 44, Issue 1-2, Pages 1-30

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0165-022X(00)00066-X

Keywords

cells; centrifugation; density gradients; Percoll; separation; subcellular particles

Ask authors/readers for more resources

At present, centrifugation is the most common method fur separation and isolation of cells and subcellular particles. The technique can be used for a wide range of applications. During latter years it has become obvious what a powerful method density gradient centrifugation is, especially when used in conjunction with sensitive assays or clinical treatments. The most active areas for use of density gradient centrifugation include purification for in vitro fertilization of sperm of both human and bovine origin, isolation of cells for cell therapy of patients receiving chemo- and radiation therapy and basic research both on cellular and subcellular levels. These treatments and investigations require homogeneous populations of cells and cell organelles, which are undamaged after the separation procedure. Percoll, once introduced to reduce convection during centrifugation, has proved to be the density gradient medium of choice since it fulfills almost all criteria of an ideal density gradient medium. Recently good results have also been obtained after silanization of colloidal silica particles, e.g, BactXtractor(TM). The latter medium has proved to be useful in recovery of microorganisms from food samples free of inhibitors to the Polymer Chain Reaction (PCR). The separation procedures described for Percoll in this review seem to be applicable to any cells or organelles in suspension for which differences in size or bouyant density exist. Furthermore, since Percoll media are inert, they are well suited for the separation of fragile elements like enveloped viruses. (C) 2000 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available