4.4 Article

Proton translocation by cytochrome c oxidase can take place without the conserved glutamic acid in subunit I

Journal

BIOCHEMISTRY
Volume 39, Issue 27, Pages 7863-7867

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bi000806b

Keywords

-

Ask authors/readers for more resources

A glutamic acid residue in subunit I of the heme-copper oxidases is highly conserved and has been directly implicated in the O-2 reduction and proton-pumping mechanisms of these respiratory enzymes. Its mutation to residues other than aspartic acid dramatically inhibits activity, and proton translocation is lost. However, this glutamic acid is replaced by a nonacidic residue in some structurally distant members of the heme-copper oxidases, which have a tyrosine residue in the vicinity. Here, using cytochrome c oxidase from Paracoccus denitrificans, we show that replacement of the glutamic acid and a conserved glycine nearby lowers the catalytic activity to <0.1% of the wild-type value. But if, in addition, a phenylalanine that lies close in the structure is changed to tyrosine, the activity rises more than 100-fold and proton translocation is restored. Molecular dynamics simulations suggest that the tyrosine can support a transient array of water molecules that may be essential for proton transfer in the heme-copper oxidases. Surprisingly, the glutamic acid is thus not indispensable, which puts important constraints on the catalytic mechanism of these enzymes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available