4.8 Article

Electronic connection to the interior of a mesoporous insulator with nanowires of crystalline RuO2

Journal

NATURE
Volume 406, Issue 6792, Pages 169-172

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/35018040

Keywords

-

Ask authors/readers for more resources

Highly porous materials such as mesoporous oxides are of technological interest(1) for catalytic, sensing and remediation applications: the mesopores (of size 2-50 nm) permit ingress by molecules and guests that are physically excluded from microporous materials. Connecting the interior of porous materials with a nanoscale or 'molecular' wire would allow the direct electronic control (and monitoring) of chemical reactions and the creation of nanostructures for high-density electronic materials(2). The challenge is to create an electronic pathway (that is a wire) within a mesoporous platform without greatly occluding its free volume and reactive surface area(3). Here we report the synthesis of an electronically conductive mesoporous composite-by the cryogenic decomposition of RuO4-on the nanoscale network of a partially densified silica aerogel. The composite consists of a three-dimensional web of interconnected (similar to 4-nm in diameter) crystallites of RuO2, supported conformally on the nanoscopic silica network. The resulting monolithic (RuO(2)parallel to SiO2) composite retains the free volume of the aerogel and exhibits pure electronic conductivity. In addition to acting as a wired mesoporous platform, the RuO2-wired silica aerogel behaves as a porous catalytic electrode for the oxidation of chloride to molecular chlorine.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available