4.7 Article

Tryptophan metabolism through the kynurenine pathway in rat brain and liver slices

Journal

FREE RADICAL BIOLOGY AND MEDICINE
Volume 29, Issue 2, Pages 191-198

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/S0891-5849(00)00341-5

Keywords

kynurenine; brain; tryptophan; quinolinic acid; kynurenic acid; hyperbaric oxygen; free radicals

Funding

  1. NIEHS NIH HHS [R01ES02566] Funding Source: Medline

Ask authors/readers for more resources

We hypothesized that hyperbaric oxygen (HBO) enhances tryptophan (TRP) flux through the kynurenine (KYN) pathway because oxygen is a substrate for four pathway enzymes. Our objective was to compare the biosynthesis of KYN pathway intermediates by rat brain and liver slices with air or HBO as the gas phase. One-millimeter thick liver and brain slices were obtained from male Sprague-Dawley rats and incubated individually in chambers containing Hanks'-HEPES- buffer with H-3-TRP (30 Ci/mmol) for 2 h (37 degrees C) in either room air or oxygen (1.2 or 5.2 atmospheres absolute [ATA] oxygen). After incubation, tissue was snap-frozen and analyzed for protein content while medium was extracted for high-performance Liquid chromatography analysis. Radiolabeled nicotinamide adenine dinucleotide (NAD) was produced by brain and liver; liver (with air as the gas phase) also produced quinolinic acid (QA). HBO at 1.2 and 5.2 ATA caused increased QA and NAD from liver slices. HBO did not affect KYN metabolism in brain slices, although there was decreased production of NAD during high oxygen. We conclude that rat brain and liver contain the complete KYN pathway and that HBO enhances KYN flux in Liver tissue. (C) 2000 Elsevier Science Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available