4.4 Article

Regulation of gut and heart left-right asymmetry by context-dependent interactions between Xenopus Lefty and BMP4 signaling

Journal

DEVELOPMENTAL BIOLOGY
Volume 223, Issue 2, Pages 291-306

Publisher

ACADEMIC PRESS INC
DOI: 10.1006/dbio.2000.9739

Keywords

Lefty; BMP4; Vg1; TGF beta; Nodal; Pitx2; heart; intestine; left-right axis; midline; Xenopus

Ask authors/readers for more resources

The Lefty subfamily of TGF beta signaling molecules has been implicated in early development in mouse, zebrafish, and chick. Here, we show that Xenopus lefty (Xlefty) is expressed both bilaterally in symmetric midline domains and unilaterally in left lateral plate mesoderm and anterior dorsal endoderm. To examine the roles of Xlefty in left-right development, we created a system for scoring gut asymmetry and examined the effects of unilateral Xlefty misexpression on gut development, heart development, and Xnr-1 and XPitx2 expression. In contrast to the unilateral effects of Vg1, Activin, Nodal, or BMPs, targeted expression of Xlefty in either the left or the right side of Xenopus embryos randomized the direction of heart looping, gut coiling, and left-right positioning of the gut and downregulated the asymmetric expression of Xnr-1 and XPitx2. It is currently thought that Lefty proteins act as feedback inhibitors of Nodal signaling. However, this would not explain the effects of right-sided Xlefty misexpression. Here, we show that Xlefty interacts with the signaling pathways of other members of the TGF beta family during left-right development. Results from coexpression of Xlefty and Vg1 indicate that Xlefty can nullify the effects of Vg1 ectopic expression and that Xlefty is downstream of left-sided Vg1 signaling. Results from coexpression of Xlefty and XBMP4 indicate that XLefty and XBMP4 interact both synergistically and antagonistically in a context-dependent manner. We propose a model in which interactions of Xlefty with multiple members of the TGF beta family enhance the differences between the right-sided BMP/ALK2/Smad pathway and the left-sided Vg1/anti-BMP/Nodal pathway, leading to left-right morphogenesis of the gut and heart. (C) 2000 Academic Press.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available