4.6 Article

A new mechanism for the control of phenoloxidase activity: Inhibition and complex formation with quinone isomerase

Journal

ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS
Volume 379, Issue 2, Pages 252-260

Publisher

ACADEMIC PRESS INC
DOI: 10.1006/abbi.2000.1884

Keywords

control of phenoloxidase; melanin biosynthesis; defense mechanism; sclerotization; metabolon formation; oxidation chemistry; quinonoid reactivity

Funding

  1. NIAID NIH HHS [AI-14753] Funding Source: Medline

Ask authors/readers for more resources

Insect phenoloxidases participate in three physiologically important processes, viz., cuticular hardening (sclerotization), defense reactions (immune reaction), and wound healing. Arrest or even delay of any of these processes compromises the survival of insects. Since the products of phenoloxidase action, viz., quinones, are cytotoxic, uncontrolled phenoloxidase action is deleterious to the insects. Therefore, the activity of this important enzyme has to be finely controlled. A novel inhibition of insect phenoloxidases, which serves as a new regulatory mechanism for control of its activity, is described. The activity of phenoloxidases isolated from both Sarcophaga bullata and Manduca sexta is drastically inhibited by quinone isomerase (isolated from Calliphora), an enzyme that utilizes the phenoloxidase-generated 4-alkylquinones. In turn, phenoloxidase reciprocated the inhibition of isomerase. By forming a complex and controlling each other's activity, these two enzymes seem to regulate the levels of endogenously quinones. In support of this contention, an endogenous complex consisting of phenoloxidase, quinone isomerase, and quinone methide isomerase was characterized from the insect, Calliphora. This sclerotinogenic complex was isolated and purified by berate extraction of the larval cuticle, ammonium sulfate precipitation, and Sepharose 6B column chromatography. The complex exhibited a molecular mass of about 620-680 kDa, as judged by size-exclusion chromatography on Sepharose 6B and HPLC and did not even enter 3% polyacrylamide gel during electrophoresis. The phenoloxidase activity of the complex exhibited a wide substrate specificity. Incubation of the complex with N-acetyldopamine rapidly generated N-acetylnorepinephrine, dehydro-N-acetyldopamine, and its dimers. In addition, transient accumulation of N-acetyldopamine quinone was also observed. These results confirm the presence of phenoloxidase, quinone isomerase, and quinone methide isomerase in the complex. Attempts to dissociate the complex with even trace amounts of SDS ended in the total loss of quinone isomerase activity. The complex does not seems to be made up of stoichiometric amounts of individual enzymes as the ratio of phenoloxidase to quinone isomerase varied from preparation to preparation. It is proposed that the complex formation between sequential enzymes of sclerotinogenic pathway is advantageous for the organism to effectively channel various reactive intermediates during cuticular hardening. (C) 2000 Academic Press.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available