4.7 Article

Salmonella exploits caspase-1 to colonize Peyer's patches in a murine typhoid model

Journal

JOURNAL OF EXPERIMENTAL MEDICINE
Volume 192, Issue 2, Pages 249-258

Publisher

ROCKEFELLER UNIV PRESS
DOI: 10.1084/jem.192.2.249

Keywords

apoptosis; pathogenesis; intestine; inflammation; macrophages

Funding

  1. NIAID NIH HHS [AI-42780, R01 AI-26195] Funding Source: Medline

Ask authors/readers for more resources

Salmonella typhimurium invades host macrophages and induces apoptosis and the release of mature proinflammatory cytokines. SipB, a protein translocated by Salmonella into the cytoplasm of macrophages, is required for activation of Caspase-1 (Casp-1, an interleukin [IL]-1 beta-converting enzyme), which is a member of a family of cysteine proteases that induce apoptosis in mammalian cells. Casp-1 is unique among caspases because it also directly cleaves the proinflammatory cytokines IL-1 beta and IL-18 to produce bioactive cytokines. We show here that mice lacking Casp-1 (casp-1(-/-) mice) had an oral S. typhimurium 50% lethal dose (LD50) that was 1,000-fold higher than that of wild-type mice. Salmonella breached the M cell barrier of casp-1(-/-) mice efficiently; however, there was a decrease in the number of apoptotic cells, intracellular bacteria, and the recruitment of polymorphonuclear lymphocytes in the Peyer's patches (PP) as compared with wild-type mice. Furthermore, Salmonella did not disseminate systemically in the majority of casp-1(-/-) mice, as demonstrated by significantly less colonization in the PP, mesenteric lymph nodes, and spleens of casp-1(-/-) mice after an oral dose of S. typhimurium that was 100-fold higher than the LD50. The increased resistance in casp-1(-/-) animals appears specific for Salmonella infection since these mice were susceptible to colonization by another enteric pathogen, Yersinia pseudotuberculosis, which normally invades the PP. These results show that Casp-1, which is both proapoptotic and proinflammatory, is essential for S. typhimurim to efficiently colonize the cecum and PP and subsequently cause systemic typhoid-like disease in mice.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available