4.6 Article

Temperature-sensitive differential affinity of TRAIL for its receptors - DR5 is the highest affinity receptor

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 275, Issue 30, Pages 23319-23325

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M910438199

Keywords

-

Funding

  1. NCI NIH HHS [CA78890] Funding Source: Medline

Ask authors/readers for more resources

TRAIL is a member of the tumor necrosis factor (TNF) family of cytokines which induces apoptotic cell death in a variety of tumor cell lines. It mediates its apoptotic effects through one of two receptors, DR4 and DR5, which are members of of the TNF receptor family, and whose cytoplasmic regions contain death domains. In addition, TRAIL also binds to 3 decoy receptors, DcR2, a receptor with a truncated death domain, DcR1, a glycosylphosphatidylinositol-anchored receptor, and OPG a secreted protein which is also known to bind to another member of the TNF family, RANKL. However, although apoptosis depends on the expression of one or both of the death domain containing receptors DR4 and/or DR5, resistance to TRAIL-induced apoptosis does not correlate with the expression of the decoy receptors. Previously, TRAIL has been described to bind to all its receptors with equivalent high affinities. In the present work, we show, by isothermal titration calorimetry and competitive enzyme-linked immunosorbent assay, that the rank order of affinities of TRAIL for the recombinant soluble forms of its receptors is strongly temperature dependent. Although DR4, DR5, DcR1, and OPG, show similar affinities for TRAIL at 4 degrees C, their rank-ordered affinities are substantially different at 37 degrees C, with DR5 having the highest affinity (K-D less than or equal to 2 nM) and OPG having the weakest (K-D = 400 nM). Preferentially enhanced binding of TRAIL to DR5 was also observed at the cell surface. These results reveal that the rank ordering of affinities for protein-protein interactions in general can be a strong function of temperature, and indicate that sizeable, but hitherto unobserved, TRAIL affinity differences exist at physiological temperature, and should be taken into account in order to understand the complex physiological and/or pathological roles of TRAIL.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available