4.4 Article

A protease-resistant catalase, KatA, released upon cell lysis during stationary phase is essential for aerobic survival of a Pseudomonas aeruginosa oxyR mutant at low cell densities

Journal

JOURNAL OF BACTERIOLOGY
Volume 182, Issue 16, Pages 4557-4563

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.182.16.4557-4563.2000

Keywords

-

Categories

Funding

  1. NIAID NIH HHS [AI-40541] Funding Source: Medline

Ask authors/readers for more resources

A Pseudomonas aeruginosa oxyR mutant was dramatically sensitive to H2O2, despite possessing wild-type catalase activity. Oxygen-dependent oxyR phenotypes also included an inability to survive aerobic serial dilution in Luria broth and to resist aminoglycosides. Plating the oxyR mutant after serial dilution in its own spent culture supernatant, which contained the major catalase KatA, or under anaerobic conditions allowed for survival. KatA was resistant to sodium dodecyl sulfate, proteinase K, pepsin, trypsin, chymotrypsin and the neutrophil protease cathepsin G. When provided in trans and expressed constitutively, the OxyR-regulated genes katB, ahpB, and ahpCF could not restore both the serial dilution defect and H2O2 resistance; only oxyR itself could do so. The aerobic dilution defect could be complemented, in part, by only ahpB and ahpCF, suggesting that the latter gene products could possess a catalase-like activity. Aerobic Luria broth was found to generate similar to 1.2 mu M H2O2 min(-1) via autoxidation, a level sufficient to kill serially diluted oxyR and oxyR katA bacteria and explain the molecular mechanism behind the aerobic serial dilution defect. Taken together, our results indicate that inactivation of OxyR renders P. aeruginosa exquisitely sensitive to both H2O2 and aminoglycosides, which are clinically and environmentally important antimicrobials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available