4.6 Article

Functional morphology of the muscles in Philodina sp (Rotifera: Bdelloidea)

Journal

HYDROBIOLOGIA
Volume 432, Issue 1-3, Pages 57-64

Publisher

SPRINGER
DOI: 10.1023/A:1004003509017

Keywords

F-actin; phalloidin; fluorescent microscopy

Ask authors/readers for more resources

Whole-mounts of Philodina sp., a bdelloid rotifer, were stained with fluorescent-labeled phalloidin to visualize the musculature. Several different muscle types were identified including incomplete circular bands, coronal retractors and foot retractors. Based on the position of the larger muscle bands in the body wall, their function during creeping locomotion and tun formation was inferred. Bdelloid creeping begins with the contraction of incomplete circular muscle bands against the hydrostatic pseudocoel, resulting in an anterior elongation of the body. One or more sets of ventral longitudinal muscles then contract bringing the rostrum into contact with the substrate, where it presumably attaches via adhesive glands. Different sets of ventral longitudinal muscles, foot and trunk retractors, function to pull the body forward. These same longitudinal muscle sets are also used in `tun' formation, in which the head and foot are withdrawn into the body. Three sets of longitudinal muscles supply the head region (anterior head segments) and function in withdrawal of the corona and rostrum. Two additional pairs of longitudinal muscles function to retract the anterior trunk segments immediately behind the head, and approximately five sets of longitudinal retractors are involved in the withdrawal of the foot and posterior toes. To achieve a greater understanding of rotifer behavior, it is important to elucidate the structural complexity of body wall muscles in rotifers. The utility of fluorescently-labeled phalloidin for the visualization of these muscles is discussed and placed in the context of rotifer functional morphology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available